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Summary

Deep sequencing of PCR amplicon libraries facilitates
the detection of low-abundance populations in envi-
ronmental DNA surveys of complex microbial com-
munities. At the same time, deep sequencing can lead
to overestimates of microbial diversity through the
generation of low-frequency, error-prone reads. Even
with sequencing error rates below 0.005 per nucle-
otide position, the common method of generating
operational taxonomic units (OTUs) by multiple
sequence alignment and complete-linkage clustering
significantly increases the number of predicted OTUs
and inflates richness estimates. We show that a 2%
single-linkage preclustering methodology followed
by an average-linkage clustering based on pairwise
alignments more accurately predicts expected OTUs
in both single and pooled template preparations of
known taxonomic composition. This new clustering
method can reduce the OTU richness in environmen-
tal samples by as much as 30-60% but does not
reduce the fraction of OTUs in long-tailed rank abun-
dance curves that defines the rare biosphere.

Introduction

Massively parallel pyrosequencing of ribosomal RNA
(rBRNA) coding regions that evolve rapidly allows the
detection of very low abundance populations in complex
microbial communities. Each processed sequence
(pyrotag) more or less serves as a proxy for the occur-
rence of a microbial genome in an environmental DNA
sample. Matching pyrotags to a reference rRNA database
or clustering tags in a taxon-independent manner to iden-
tify operational taxonomic units (OTUs) suggests that
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taxonomic richness in marine, terrestrial and microbiome
communities exceeds all prior estimates of microbial
diversity. Many of the novel OTUs correspond to low-
abundance organisms of the ‘rare biosphere’ (Pedros-
Alio, 2006; 2007). However, the ability to generate more
comprehensive descriptions of microbial diversity through
deep sequencing introduces new challenges when esti-
mating diversity, and questions have been raised about
the accuracy of OTU richness estimates and the extent of
the rare biosphere. Sequencing errors coupled with inad-
equate choice of clustering algorithms can lead to artifi-
cially elevated estimates of community richness.

Quality-controlled sequence reads of 16S rRNA V6
hypervariable region amplicon libraries produced by the
Roche Genome Sequencer 20 System (GS 20) have a
per-base error rate of 0.25% (Huse et al., 2007), which is
comparable to a average phred score better than 25 on
contemporary capillary instruments (Ewing and Green,
1998; Ewing et al., 1998). For targets such as the short V6
rRNA hypervariable region that initially revealed the exist-
ence of the rare biosphere, 1 inaccurate nucleotide per
400 positions translates into 13% of the reads containing
at least 1 inaccuracy. The number of sequences contain-
ing errors scales with the size of the sequencing effort,
with larger data sets yielding a greater number of distinct
sequencing variants. Instead of estimating diversity
according to the number of unique sequences recovered,
clustering methods based on either phylogenetic infer-
ences or sequence similarities can define membership in
an OTU. Similarity between rRNA genes equal to or
greater than 97% often serves as a benchmark for assign-
ing sequences to the same OTU. Yet even with very low
sequencing error rates, the very large data sets produced
by massively parallel sequencing will inevitably contain a
fraction of reads with multiple errors, which can lead to
overestimates of diversity.

Recent reports have demonstrated the difficulties in
clustering sequences into the appropriate number of
OTUs in a sample based upon either unique rRNA
pyrotags or 3% clusters. Kunin and colleagues (2010)
explored how intrinsic pyrosequencing errors can lead to
inflated estimates of diversity. Using the Markov Cluster
algorithm (Van Dongen, 2008) they identified several
hundred OTUs in pairwise alignments of ~8000 300 nt
reads from both the 5’ (4254 reads) and the 3’ end (4244
reads) of the Escherichia coli MG1655 rRNA gene. They
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examined the impact of quality filters including those out-
lined by Huse and colleagues (2007) as well as filters that
incorporate an improved quality-scoring algorithm that
allows for a minimum average quality score and more
stringent end-trimming (Brockman et al., 2008). By apply-
ing a stringent quality filter minimum of < 0.2% error and
computing 3% pyrotag clusters, Kunin and colleagues
(2010) obtained the predicted estimates of diversity for a
single microbial genome.

A different strategy for minimizing the contribution of
pyrosequencing error to inflated estimates of diversity
relies upon the program PyroNoise (Quince et al., 2009).
This algorithm corrects pyrosequences that are statisti-
cally more likely to be a variant of a common read caused
by pyrosequencing error than an infrequent novel
sequence. Rather than relying on the Roche base-calling
algorithm and associated quality scores, PyroNoise
evaluates the underlying flowgrams from the Roche
Genome Sequencer FLX System (GS FLX). The combi-
nation of PyroNoise, multiple sequence alignment and
complete linkage clustering (MS-CL) identified ~60 OTUs
in an analysis of pyrotags from a pooled template prepa-
ration (Quince et al., 2009). Without PyroNoise, the same
clustering procedure inflated diversity to ~6000 OTUs. In
an environmental sample of 16 222 pyrotags from Priest
Pot Lake, PyroNoise reduced the OTU richness from
1327 to 855. However, the current implementation of
PyroNoise requires very large computational resources
(Quince et al., 2009).

Sun and colleagues (2009) evaluated the impact of
using pairwise (PW) alignments between sequences
rather than the commonly used multiple sequence (MS)
aligners, e.g. MUSCLE (Edgar, 2004), ClustalW (Thomp-
son et al., 1994) or NAST (Desantis et al., 2006). Pairwise
alignments reduced the number of OTUs by ~30% com-
pared with MS alignments. Performing pairwise align-
ments for hundreds of thousands of sequences requires a
large number of CPU cycles. Sun and colleagues (2009)
devised a filter using the more efficient kmer distances to
preselect from all possible pairwise combinations only
those combinations needed for clustering. For example,
precisely computing pairwise distances for sequences dif-
fering by more than 10% is not required for creating accu-
rate 3% clusters. Their program ESPRIT incorporates the
kmer prefiltering of pairwise distances followed by a
Needleman-Wunsch alignment (Needleman and Wunsch,
1970) for all sequence pairs of interest. This program
makes pairwise alignments feasible for even very large
samples.

Each of these studies focused on one aspect of deter-
mining OTUs based on sequence similarity, either pyrose-
quencing error or alignment. Here we evaluate multiple
facets of the entire clustering process, specifically the
contribution of sequencing error, alignment method and

clustering algorithm to the number of observed OTUs for
communities of known taxonomic composition. We set our
cluster threshold at 3% to minimize the influence of
sequencing errors and to be consistent with the work cited
above and with the majority of microbial diversity publica-
tions (Stackebrandt and Goebel, 1994). We amplified and
pyrosequenced the V6 hypervariable region of the riboso-
mal RNA gene from single- and multiple-template pools to
determine a simple and computationally effective method
for accurately clustering short hypervariable pyrotags. We
then applied this new clustering method to multiple pub-
lished environmental samples to determine the nature
and extent of OTU inflation in diverse samples.

Results

To assess the accuracy of sequence clustering methods,
we generated amplicon libraries of the V6 region from
several DNA preparations of known 16S rRNA coding
region composition: (i) cultures of a single clone (colony
forming unit) of E. coli, which contains seven 16S operons
with two distinct V6 hypervariable region sequences; (ii)
cultures of a single clone of Staphylococcus epidermidis,
which contains six 16S rRNA operons with two distinct V6
sequences; (iii) a plasmid clone containing a nearly full-
length 16S rRNA coding region from E. coli 16S rRNA
operon A, (iv) a plasmid clone containing a nearly full-
length 16S rRNA coding region from S. epidermidis 16S
rRNA operon 9; and (v) a mixture of 43 plasmid clones
(Clone-43) containing partial 16S rRNA coding regions
that span the V6 hypervariable region of distinct 16S
rRNA genes amplified from a deep-sea hydrothermal vent
community (Huse et al., 2007). We sequenced approxi-
mately 200 000 high-quality reads from each of the
genomic template E. coli and S. epidermidis libraries and
from the mixed template Clone-43 library, and approxi-
mately 30 000 high-quality reads from the single template
E. coli and S. epidermidis plasmid clone libraries. The
amplified V6 regions of E. coli and S. epidermidis are 60
and 62 nt respectively. The V6 region of the Clone-43
mixture ranges from 57 to 145 nt.

PCR and pyrosequencing error

Prior to calculating the sequencing error rate, we elimi-
nated the 11-19% of all reads that did not pass previously
described quality filtering (Huse et al., 2007; Kunin et al.,
2010). Our requirement that valid reads and their best
match in a database of 16S rRNA sequences have an
alignment = 80% of the read’s length (Table S1) elimi-
nated an additional 0.02—-0.14% of the reads. Comparing
the reads that failed this criterion to the GenBank, non-
redundant sequence database showed that many repre-
sented non-V6 amplification products. A small number of
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Table 1. Number of OTUs for different clustering methods.
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Maximum expected

Expected OTUs due to errors MS-CL PW-AL SLP/PW-AL
Template samples
E. coli (n=215618) 2 378! 1042 277 88
E. coli SSU A (n= 31 030) 1 23! 137 25 10
S. epidermidis (n =197 876) 2 769" 1267 323 128
S. epidermidis SSU 9 (n= 37 587) 1 85! 205 37 20
Clone-43 (v6) (n =202 340) 43 630" 2473 458 275
Clone-43 v4-5 (232 nt, n= 16 673) 42 23! 126 51 54
Clone-90 (241 nt, n= 34 308) 30 34-692 237 65 62
Natural samples
Deep-sea vent Archaea (n= 63 133) N/A 63-1262 709 483 470
English Channel (n=12 851) N/A 13-262 1154 880 859
Human Gut (n= 15 239) N/A 15-30? 803 625 566
Sewage (n= 33 082) N/A 33-662 2383 1881 1831
North Atlantic Deep Water (n= 15 497) N/A 15-30? 1713 1363 1339

For both known template and environmental samples, we calculated the number of expected OTUs (known templates only) and the number
generated using several alignment and clustering methods. We calculated the maximum additional OTUs expected due to errors using either (1)
the count of unique sequences having more than 2 errors in the template pool (superscript ‘1’ in the table), or (2) 1-2 OTUs for every 1000 tags
(superscript ‘2" in the table). MS is a multiple sequence alignment, PW is a pairwise alignment, CL is complete-linkage clustering, AL is

average-linkage clustering, and SLP is single-linkage preclustering.

the aberrant reads contained insertion artefacts in the V6
amplicons. Short, highly diverse amplicon libraries that do
not contain conserved regions will produce few if any
chimeric reads (S.M. Huse, unpubl. obs.), and we assume
that the minimum GAST alignment length requirement
removed any inter-template chimeras in the Clone-43
data set. The large number of similar amplicons in the E.
coliand S. epidermidis genomic template data sets led to
the formation of several obvious within-species chimeras
that we identified and removed based upon our knowl-
edge of the sequences.

Differences between a pyrotag sequence and its tem-
plate reflect a combination of PCR and pyrosequencing
error. We calculated the combined error rate, understand-
ing that any unfiltered contamination, chimeras or non-
rRNA amplification will increase our error rate estimates.
We define the error rate for a given sequence as the
number of insertions, deletions and substitutions in a
sequence as compared with its template, divided by the
length of the template sequence. The error rate varied
between data sets, ranging from 0.0021 to 0.0042
(Table S2). This fits within the range we reported previ-
ously using a GS20 platform (Huse et al., 2007) and com-
pares with the error rate of capillary sequence data with
an average phred score of 24-27.

If pyrosequencing errors occurred at random, the
number of expected sequences with exactly n errors
would follow the binomial distribution. Figure S1 shows
that sequences having 1 error occurred less frequently
than expected, while those with 3 or more errors exceeded
expectations for a random distribution. Thus, a small pro-
portion of the sequences contained multiple errors not
predicted by the binomial distribution. In analyses of GS20
data, we previously reported that a limited number of

sequences contained multiple errors (Huse et al., 2007),
which agrees with the known propensity for pyrosequenc-
ing technology to produce a small number of reads with
many errors likely from beads on which the growing DNA
strands fall out of phase or from multi-templated beads of
similar sequence. Despite this non-random distribution,
the vast majority of reads (> 99%) display no more than
two differences (< 3.5% variation) from their parent tem-
plates (Table S2). We had previously assumed that
pyrotags with 3% or fewer errors would cluster with their
parent sequence while errant pyrotags containing more
than 3% errors would likely form a new singleton OTU, but
might occasionally join a cluster of closely related errant
sequences. Table 1 shows that the number of 3% OTUs
calculated using the common method of multiple
sequence alignment and complete-linkage clustering (MS-
CL) exceeds the sum of expected template OTUs (based
upon the known number of rRNA coding regions in each
template pool) plus the number of clusters that would
occur if each errant sequence > 3% variant formed a new
OTU. This suggests that sources other than pyrosequenc-
ing error can inflate OTU estimates.

Effect of alignment and clustering methods

To evaluate the tendency of clustering methods to inflate
the number of OTUs, we examined the behaviour of
various approaches on sequences that differed by less
than 3.5% (or 2 errors) from their template [the commonly
used program, mothur (Schloss et al., 2009), rounds dis-
tances to the nearest whole per cent when defining a
cluster]. We found that MS-CL returned 129 instead of the
two expected E. coli OTUs, 89 rather than the two
expected S. epidermidis OTUs and 694 Clone-43 OTUs
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Table 2. Effect of clustering algorithm on sequences within 3% of their template.

Escherichia Staphylococcus Escherichia coli Staphylococcus

coli epidermidis operon A epidermidis operon 9 Clone-43
Expected 2 2 1 1 43
MS-CL 129 89 9 26 694
MS-AL 54 44 6 12 218
MS-SL 2 2 1 2 57
PW-CL 6 5 1 1 308
PW-AL 2 2 1 1 43
PW-SL 2 1 1 1 43

For each of five defined template preparations, we used combinations of alignment and clustering methods to create 3% OTUs.

rather than the expected 43 (Table 2). Clearly, the clus-
tering methodology propagates additional OTUs. To
determine the cause(s) of this inflation we examined the
effects of sequence alignment and clustering method on
the number of OTUs generated from sequences that differ
by less than 3.5%.

We first tested the effect of alignment strategies on the
number of OTUs. Differences between hypervariable
rRNA coding regions include a combination of elevated
rates of nucleotide substitution, insertions and deletions
that lead to considerable uncertainty in multiple sequence
alignments. Sun and colleagues (2009) showed that com-
bining thousands of such diverse sequences in one align-
ment can inflate the number of OTUs. Their pairwise
alignments of pyrotags consistently yielded fewer OTUs
than the multiple sequence alignments from MUSCLE,
NAST or RDP-Pyro. We found that using a Needleman-
Wunsch pairwise alignment rather than an unstructured
multiple sequence alignment removed from 56% to 97%
of the spurious OTUs in data sets containing only
sequences less than 3.49% different from their template
(Table 2).

We examined the effect of three clustering algorithms:
complete linkage, i.e. furthest neighbour, average linkage,
i.e. average neighbour or UPGMA and single linkage, i.e.
nearest neighbour. These algorithms employ different
rules to determine whether a new sequence adds to an
existing cluster or initiates formation of a new cluster.
When using a 3% cut-off criterion for adding sequences to
a cluster, complete linkage requires that a new sequence
be less than 3% different from every other sequence
already in the cluster; average linkage requires that the
average distance between the new sequence and every
sequence already in the cluster be less than 3%; and
single linkage requires only that the new sequence be
less than 3% different from any one read within the
cluster. Regardless of alignment method, complete
linkage produced more OTUs than expected (Table 2).

In the absence of sequencing error greater than 3%, the
combination of pairwise alignment and average-linkage
clustering successfully eliminated all spurious OTUs from
our five simplified data sets containing errors < 3%

(Table 2). Quince and colleagues (2009) also found that
average-linkage clustering provides better results in the
presence of noise. We applied this method to complete
data sets (containing errors > 3%). As expected, we elimi-
nated most but not all spurious OTUs because the data
sets include sequences with too many errors to cluster
with their template (Table 1, Fig. 1).

Creating preclusters represented by single sequences

To reduce the number of spurious clusters produced by
errant sequences, we introduced a modified single-
linkage preclustering (SLP) step. We sorted sequences in
abundance order before using the single-linkage algo-
rithm to cluster sequences that differ by only 2%. Unlike
other single-linkage algorithms, SLP does not merge two
clusters when incorporating a new sequence that is within
2% of both; instead, it assigns the new sequence to the
cluster containing the most abundant sequences. We
chose a 2% preclustering width because the preclustering
width must be less than the final clustering width, and
because 2%, which corresponds to a single nucleotide
change in a short, 60 nt read, is the smallest threshold
that can be applied to V6 pyrotag sequences. Finally, SLP
assigns the most abundant sequence as the representa-
tive of each precluster in a 3% average-linkage clustering
of the full data set. This single-linkage preclustering
approach reduced the number of spurious OTUs in data
sets of known composition by ~90% (Table 1). We applied
this method to the analysis of longer pyrotags from DNA
preparations of known composition: the V4-V5 region of
Clone-43 (average sequence length 232 nt) and a data
set of ~240 nt including the V5 region from 90 plasmid
templates (Clone-90) initially analysed by Quince and col-
leagues (2009). These longer sequences show lower
rates of OTU inflation, perhaps because so many more
changes in the sequence are needed to exceed 3%. The
SLP step removed nearly all of the spurious OTUs from
both of these data sets (Table 1). Single-linkage clustering
normally carries the risk of over-aggregating sequences in
complex samples. If the sequence space contains abun-
dant template sequences surrounded by decreasing
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Fig. 1. Effect of clustering method on the number of OTUs. We created OTU clusters of the three known template preparations using
combinations of multiple sequence and pairwise alignments, complete-linkage and average-linkage clustering, and single-linkage preclustering.
Each method provides distinctly different numbers of OTUs for the same data. For short hypervariable tags sequenced at depth, the
single-linkage preclustering using pairwise alignments, followed by an average linkage clustering (SLP / PW-AL) provides the most accurate

results.

numbers of variants, then presorting by abundance pro-
hibits the chaining together of template sequences with
increasing divergence. Only those templates that are less
than 3% different will fall into the same cluster, and these
sequences should cluster together under any algorithm.
Inspection of the OTUs generated in all of these samples
showed that the SLP method succeeded in placing variant
sequences with three or even four errors into OTUs with
their template sequence, but did not aggregate template
sequences that differed by more than 3%.

To assess the remaining OTU inflation caused by
errant sequences that SLP did not aggregate, we used
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SLP/PW-AL to determine OTUs in subsamples of the two
genomic templates and the multiple-template Clone-43
data set at depths from 100 to ~200 000 tags (197 846
sequences for S. epidermidis). As Fig. 2 illustrates, the
number of spurious OTUs generated is a function of sam-
pling depth. The Clone-43 sample, with the highest ratio
of spurious OTUs, has 234 extra OTUs at a sampling
depth of 200 000. The E. coli sample had a rate less than
half of that with only 85 extra OTUs at 200 000
sequences. Although the curves are not linear, they show
that we can expect between one and two spurious OTUs
per 1000 reads.

Fig. 2. Number of additional OTUs as a
function of sample depth. For the two
genomic templates, E. coliand S.
epidermidis, and the multiple template
Clone-43 samples, we calculated the number
of spurious OTUs as a function of sample
depth.

200,000
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Table 3. Distribution of most and least abundant pyrotags in MS-CL and SLP/PW-AL clusters.

Deep-sea vent English Human North Atlantic
Archaea Channel Gut Sewage Deep Water

Size of most abundant OTU MS-CL 47 711 1613 836 948 1371

Size of most abundant OTU SLP/PW-AL 49 857 1882 1436 4219 1711

Total OTUs MS-CL 709 1154 803 2383 1713

Total OTUs SLP/PW-AL 470 859 566 1831 1339

Per cent OTUs as singletons — tripletons MS-CL 39% 66% 65% 69% 74%

Per cent OTUs as singletons — tripletons SLP/PW-AL 42% 64% 64% 69% 77%

Compatrison to PyroNoise

We compared the SLP approach to PyroNoise (Table S3),
using two samples previously analysed with PyroNoise
(Quince et al., 2009), and three additional samples (two
environmental and the Clone-43 pooled-template prepa-
ration). Both methods reduced the number of OTUs by
approximately 30—-50%. None of the SLP/PW-AN OTUs
contained multiple high abundance sequences that dif-
fered by more than 3%.

Impact on environmental data sets and the
rare biosphere

We compared the effect of the MS-CL and SLP/PW-AL
methods of clustering on the distribution of OTU abun-
dances in bacterial V6 amplicon libraries representing
samples from the English Channel (Gilbert et al., 2009),
Milwaukee sewage (McLellan et al., 2010), the human gut
(Turnbaugh et al., 2009), the North Atlantic Deep Water
(Sogin et al.,, 2006) and an archaeal V6 amplicon library
from a deep-sea hydrothermal vent (Huber et al., 2007).
SLP/PW-AL generated 30—-40% fewer OTUs than MS-CL
(or SLP/MS-CL, Table S4). The relative frequency of the
most abundant OTUs was 10-50% greater using SLP/
PW-AN, consistent with the aggregation of errant
sequences with their template that occurs during the SLP
step (Table 3). Neither the fraction of OTUs that contained
only a single tag (singleton OTUs) nor the fraction of
OTUs that contained 1-3 tags differed substantially
between methods. Thus, while SLP/PW-AN reduces the
total number of OTUs it does so across a wide range of
OTU abundances and does not reduce the proportion of
OTUs that comprise the long tail of the abundance curve.

Discussion

The increased molecular sampling effort enabled by mas-
sively parallel DNA sequencing allows the detection of
very-low-abundance DNA molecules in complex PCR
amplicon libraries. In diversity surveys, these low-
abundance sequences delineate rare OTUs (containing
one or a few sequence tags) that define the long tail of
rank abundance curves for complex microbial communi-

ties. This distribution implies the existence of a rare bio-
sphere of many hundreds or thousands of very low
abundance phylotypes. The extent of the long tail could
reflect true biological signals of diversity, or deep molecu-
lar sampling efforts might amplify the effect of sequencing
errors and clustering methods when estimating OTU rich-
ness. In their review of techniques for minimizing pyrose-
quencing error, Reeder and Knight (2009) suggested that
the majority of pyrotags that make up the rare biosphere
represents the accumulation of small sequencing errors.
By extrapolating the rate of OTU inflation observed for
low-complexity amplicon libraries, e.g. templates contain-
ing rRNA genes for either a single taxon or 90 taxa, they
predicted similar impacts on diversity estimates for
complex microbial communities and that the reduction in
OTUs would correspond to rare biosphere populations. To
determine how sequencing error might inflate estimates of
OTUs, we undertook an in-depth analysis of template
pools of known rRNA composition to determine the con-
tribution of sequencing error to estimates of microbial
diversity, the effect of alignment and clustering methodol-
ogy when defining OTUs from massively parallel pyrotag
data sets, and the contribution of aberrant amplicons tem-
plated from non-rRNA coding regions. After filtering low-
quality sequences, the per-base pyrosequencing error
rate on the GS FLX platform did not exceed conventional
capillary systems. However, the behaviour of common
alignment and clustering algorithms led to significant infla-
tion of 3% OTUs commonly cited in studies of microbial
diversity. Very large data sets irrespective of sequencing
technology exacerbate the influence of these factors on
estimates of diversity.

Before estimating the number of OTUs predicted by
pyrosequencing of the pooled template preparations, we
removed low-quality reads and identified sequences that
did not represent targeted hypervariable regions. In the
case of DNA extracted from E. coli and S. epidermidis
cultures, many of the non-target reads mapped to spe-
cific regions of the genome that did not code for rRNAs.
In some genomes our rRNA primers will bind with low
efficiency to similar but non-identical targets to produce
non-rBNA pyrotags. This contamination by non-rRNA
amplicons may vary for different taxa and may increase
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for complex communities with greater aggregate genetic
complexity. It also reinforces the importance of screening
reads for the inclusion of both primers, a process that is
more difficult when pyrosequencing read lengths fail to
span longer amplicon targets. While the fraction of these
reads may be low, they contribute disproportionately to
the creation of spurious OTUs; most represent unique
sequences that will form novel clusters at any level. Reli-
ance upon a significant local match by BLAST fails to
identify these reads since the local match can be quite
short. Requiring the alignment to extend for at least 80%
of the length of the read effectively filters these non-
target sequences from the pyrotag data set. A minimum
alignment length can also detect chimeras between
divergent taxa, although short hypervariable tags from
diverse communities appear to generate few if any chi-
meras (S.M. Huse, unpublished analysis of 25 million
pyrotags).

After removing low-quality sequences (Huse etal,
2007; Kunin et al., 2010) and reads that did not represent
the targeted region, we measured the per-base error rate
to be 0.0021-0.0042. (We also identified a small number
of V6 rRNA reads from microbial taxa that we did not
intentionally include in the initial DNA preparations. An
examination of sterile nutrient broth revealed that the
yeast extract component contained DNA from diverse
microbial taxa, data not shown.) This represents a com-
bination of in vivo DNA replication errors, PCR errors and
incorrect base calls by the Roche GS FLX software. The
distribution of errors did not follow a binomial distribution,
as we would expect if errors were randomly distributed in
an independent manner throughout the reads. The mea-
sured error rate of ~0.003 failed to account for the number
of 3% OTUs produced using MS-CL, because sequences
with less than 3% errors did not form a single cluster with
their parent sequence. The inability to optimize in a single
alignment a large number of hypervariable sequences
from highly divergent taxa exacerbates the difficulty of
clustering errant sequences with their parent sequence.
The presence of multiple OTUs that should cluster
together at the 3% level may explain most of the OTU
inflation.

The use of the complete-linkage clustering algorithm
also inflates the number of estimated OTUs: as the
amount of variation within the limited sequence space
increases, it is decreasingly likely that variants will meet
the requirement that no sequence can be added to an
OTU wunless it is less than 3% different from every
sequence already in the OTU. Reads that vary from their
template at different locations may be within 3% of the
template, but not within 3% of each other. Each subse-
quent variant can initiate the formation of a new OTU. This
leads to many individual OTUs comprised of variants less
than 3% from their parent sequence. We tested clustering
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methods on mixed template preparations from which we
filtered out variation greater than 3%, and demonstrated
that clustering using the common method of an unstruc-
tured multiple sequence alignment followed by complete-
linkage clustering (MS-CL) grossly overestimates the
number of OTUs, while a pairwise alignment and
average-linkage clustering (PW-AL) accurately identifies
a single OTU for each template.

To further reduce the inflation of OTUs even in data sets
containing errant sequences, we developed a single-
linkage preclustering method, SLP. The method assumes
that template sequences will occur more frequently than
their error-induced variants. We first sort sequences in
order of abundance, and then create 2% single-linkage
clusters. In a dense sequence space, single-linkage clus-
tering can potentially chain together sequences so that
OTUs can contain highly divergent but clearly related
sequences. By starting with the most abundant
sequences, we seed each cluster with template
sequences and then add the less abundant variants; this
prevents less frequent variants from linking templates that
differ by more than 3% into the same OTU. We use the
very narrow preclustering width of 2% to further reduce
the likelihood of over-zealous aggregation, while still
aggregating error-induced variation (the optimal width
may vary with tag length). Careful examination of all clus-
ters generated for both our mixed template data sets and
the natural communities revealed no cases where an
OTU contained abundant sequences that were not within
3% of each other.

Both our SLP method and PyroNoise map infrequent
sequencing variants to more frequent sequences, and
both appear to be effective in reducing the sequencing
noise that can contribute to OTU inflation. SLP, however,
can also map variations arising from PCR error and micro-
evolution to representative sequences. SLP and
PyroNoise provide comparable reductions in spurious
OTUs (Table S3). The two methods are not mutually
exclusive however, and could be used in tandem, first
cleaning pyrosequencing error with PyroNoise then com-
bining moderate variation with SLP. The computational
expense of running SLP, however, is much less than the
current version of PyroNoise.

Any sequencing method will have an intrinsic error rate,
and given a large enough sample size the errant
sequences will potentially inflate estimates of diversity.
Empirically, we find that after SLP and average-linkage
clustering, a smaller number of spurious OTUs remain
than with other clustering methods. The majority of these
remaining OTUs contain a single read, and we measure
the rate of their occurrence in our defined V6 template
pools to be ~0.0015 per template. Thus, a data set of 1000
reads (a sampling effort common for Sanger sequencing)
would have only 1-2 reads with enough errors to cluster
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independently of their parent sequence. However, a
deeper survey of 10 000 or more reads made possible by
next-generation technologies such as pyrosequencing will
produce 10-20 additional reads. This is substantially less
than the number of singleton OTUs found in most envi-
ronmental data sets.

We examined the OTUs generated by SLP/PW-AL from
each of our mixed template preparations and found that
>90% of the spurious OTUs contained only a single
sequence; the rest generally contained two or rarely
three. While indiscriminately removing all singleton OTUs
will certainly reduce spurious OTUs, singleton OTUs fre-
quently represent valid rare phylotypes in diverse environ-
mental samples. We compared singleton OTUs from
replicate single genome templates and found that even
with very deep sequencing (> 60 000 reads/replicate),
singletons from one replicate rarely occurred in other rep-
licates. If parallel generation of the same singleton OTU
rarely occurs at these depths, we argue that the same
spurious OTU will rarely arise in multiple environmental
samples. In a preliminary analysis using 487 samples
from the International Census of Marine Microbes
(ICoMM, http://icomm.mbl.edu), we found that the prob-
ability of an OTU found in one sample occurring in another
sample was about the same for singleton OTUs and non-
singleton OTUs (not shown).

Extrapolating OTU inflation from results of single tem-
plate preparations can lead to unwarranted conclusions
since the OTU inflation is a function of the sampling effort,
not the sample diversity. For example, if a sample is
sequenced to a depth of 20 000 tags, it will produce
20-40 spurious OTUs at the 3% threshold using SLP/
PW-AN clustering. If the sample contains a single tem-
plate, these 40 extra OTUs will constitute an inflation of
400%. In a sample with 100 different templates these
OTUs would represent an inflation of 40%. In a complex
environmental sample with more than 1000 phylotypes,
the spurious OTUs would inflate estimates of diversity by
less than 4%. Consistent with this prediction, SLP/PW-AL
reduced the OTU counts in our simple template prepara-
tions by ~90%, but OTU counts only decreased by
30-60% in complex environmental samples, a significant
change but not different by orders of magnitude. Quince
and colleagues (2009) reported very similar results with
an 80% decrease in the OTUs of an artificial community,
but only a 40% decrease in an environmental sample.
Theoretically, when the sample diversity exceeds 1-2% of
the sample depth, the OTU inflation (assuming 1-2 OTUs/
1000 reads) will be less than 10%. When the sample
diversity exceeds 5-10% of the sample depth, the OTU
inflation will be less than 2%.

Our initial expectation was that sequencing errors and
clustering artefacts would disproportionately affect the
rare OTUs. As the new SLP/PW-AL method maps errant

sequences to their template sequence, the more abun-
dant OTUs tend to increase in number. The majority of
these sequences, however, previously clustered into non-
singleton OTUs. Although the SLP/PW-AL method
removed many spurious OTUs, the shape of the OTU
abundance distribution curve remains essentially the
same — a small number of highly abundant species and a
long tail of rare species.

Experimental procedures
Generation of amplicon libraries and pyrosequencing

We inoculated 5 ml of filter-sterilized nutrient broth with a
single colony of E. coli K12 ATCC 10798 or S. epidermidis
ATCC 14990, and grew these cultures overnight at 37°C to
an ODg of ~1 [nutrient broth is 8 g Difco nutrient broth
powder (Invitrogen) in Milli-Q+ ultrapure water (Millipore) to
11; all loops, pipets, flasks, etc. were disposable sterile poly-
carbonate or polypropylene]. For each species, we inocu-
lated three 250 ml flasks, each containing 50 ml nutrient
broth, with 100 pl of the overnight culture. We incubated the
flasks at 37°C with vigorous shaking and harvested the cul-
tures at late stationary phase (ODgy of ~1.25). We then
divided each culture into three aliquots, extracted genomic
DNA and used each DNA extraction in a separate amplifica-
tion of the V6 region. We split one amplicon library from each
species into two emPCR amplification prior to pyrosequenc-
ing for a total of 10 subsamples of single clones of E. coliand
of S. epidermidis. We also generated an amplicon library from
a previously prepared pool of plasmid DNA from 43 different
cloned 16S rRNA genes from deep-sea vent organisms
(Huse et al., 2007; Huber et al., 2009).

We generated amplicon libraries using primer pools
designed to span the V6 or V4-V5 hypervariable regions of as
many known bacteria or archaea as possible (Tables S5 and
S6). We used Invitrogen Platinum HiFi Tag polymerase for
amplification, as we have found that the fidelity of standard
Taq is insufficient for the level of deep sequencing provided
by the GS FLX. We sequenced from the A adapter on a
Roche GS FLX using standard Roche protocols and supplies
and the amplicon base-calling pipeline. Sequences are avail-
able at the NCBI Short Read Archive (SRP001610).

Data from environmental samples were collected as previ-
ously described (Sogin etal., 2006; Huber etal., 2007;
Gilbert et al., 2009; Turnbaugh et al., 2009; McLellan et al.,
2010) using the amplification and processing methods out-
lined above.

Filtering low-quality and contaminating reads

For all data sets, we removed all sequences that contained
one or more ambiguous bases (Ns), that did not have an
exact match to the expected bar-coded forward primers, or
that had an average quality score less than 30 (the V6 region
is short and generally low in homopolymer stretches and
therefore has high average quality scores) (Sogin etal,
2006; Huse et al., 2007; Kunin et al., 2010). For V6 data sets,
we also removed sequences that did not have a recognizable
reverse primer sequence.
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For non-environmental data sets, we compared all reads to
a database of 16S rRNA sequences using GAST (Huse et al.,
2008). Reads that had a best match to a non-target sequence
that was at least 10% better than the match to the nearest
template sequence were considered to be contamination and
were removed. Reads that either did not have any match or
did not have a match over at least 80% of their length were
considered to represent non-target amplification, chimeras or
reads with gross errors and were removed. These sequences
were compared with the GenBank nt database using
BLASTN (Altschul et al., 1990).

The likelihood of generating chimeras between short,
hypervariable rRNA sequences of divergent taxa in the
absence of the conserved regions of the gene is very small.
The E. coli and S. epidermidis data sets, however, each
include two very similar sequences in high density. Chimeras
here are very similar to the correct sequences and map to the
same species; therefore they are not identified by the
minimum BLAST alignment requirement nor by standard
chimera checking software, and would artificially increase the
calculated error rate of PCR+pyrosequencing. Through visual
examination we identified obvious chimeras and removed
those specific sequences from the data. Some additional
chimeras that contain sequencing errors and therefore do not
exactly match predicted chimeras likely remain.

Calculating the PCR+pyrosequencing error rate

We compared each read to the relevant set of template
sequences using the needledist module of ESPRIT (with
options —g 5.75 —e 2.75 —x) (Sun et al., 2009). The error rate
was calculated as the number of insertions and deletions (of
any length) plus the number of individual substitutions divided
by the length of the template sequence.

Clustering reads into OTUs

We used mothur (Schloss et al., 2009) to create a set of
unique sequences from a fasta file of all quality-filtered reads
in each sample. For unstructured multiple sequence align-
ments we used MUSCLE (Edgar, 2004) with non-default
parameters —-maxiters 2, —diags which have been previously
shown to minimize alignment expansion in short hypervari-
able tags (Sogin etal, 2006; Sun etal, 2009). For
Needleman-Wunsch pairwise alignments we used the kmer-
dist and needledist modules of ESPRIT (default parameters).
We used quickdist (Sogin et al., 2006) to create the distance
matrix of all pairwise combinations from the multiple
sequence alignment. ESPRIT’s needledist creates a distance
matrix using the quickdist distance calculation: the number of
substitutions, deletions and insertions divided by the align-
ment length. We then used mothur to create OTUs using the
single-linkage, average-linkage or complete-linkage options,
and to calculate richness and rank-abundance statistics.

Single-linkage preclustering

Our preclustering algorithm first orders the unique sequences
by frequency, then steps through the ordered sequences,
assigning them to clusters. The most abundant sequence
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starts the first cluster. Each subsequent sequence is tested
against the growing list of clusters using the single-linkage
algorithm. If the sequence has a pairwise distance less than
0.02 (equivalent to a single difference in the V6 region) to any
of the sequences already in the cluster, the new sequence
will be added to the cluster and not tested against subse-
quent clusters. If the sequence is not within a distance of 0.02
from any read in any of the existing clusters, it will establish
a new cluster. Once all sequences have been assigned to
clusters, sequences in the low abundance clusters (<10
tags) are tested against the larger clusters and added to
those clusters if possible. Ordering sequences by frequency
ensures that those sequences that accurately represent the
template pool will preferentially seed the establishment of a
new cluster rather than those errant sequences that occur at
lower frequency. This also helps avoid linking very different
template sequences into a single cluster through a chain of
low frequency errant sequences. The second round of pre-
clustering incorporates small clusters into larger clusters in
cases where the smaller cluster formed before the larger
cluster included sequences that differ from the smaller cluster
by less than 2%. For each final precluster, SLP assigns the
sequence with the highest frequency to represent the cluster
in downstream OTU clustering, with the count of all tags in
the precluster assigned to it. The perl script that performs
these operations, SLP, can be downloaded from http://
vamps.mbl.edu/resources/software.php.

PyroNoise comparisons

We randomly selected 10 000 tags having an average quality
score = 30 and no ambiguous bases. We ran PyroNoise with
default values (including —s 15.0 —c 0.05 for PCluster) and
removed denoised sequences that did not map to Bacteria by
GAST. The remaining sequences were clustered using pair-
wise alignments and average-linkage clustering as above.
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Fig. S1. Reads with errors: observed vs. expected. We
plotted the number of reads with one or more errors that we
observed and that would be expected using a binomial dis-
tribution of errors. The binomial distribution underestimates
the number of reads with multiple errors. The error rates used
for each community are reported in Supplementary Table 2.
Table S1. Sequences generated from each clone
experiment.

Table S2. Pyrosequencing and PCR error.

Table S3. PyroNoise comparison.

Table S4. Comparison of clustering methods after single-
linkage preclustering (SLP).

Table S5. Amplification primers.

Table S6. Multiplexing barcodes used to differentiate sub-
samples of the two genomic template samples.
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